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Abstract 
   Path planning is a category of Artificial 

Intelligence that strives to determine the optimal 
path or method steps to progress from an initial 
state to a final state. In this problem, we 
consider a 2-dimensional environment of 
rectangular and triangular blocks  

 

Introduction: Path Planning 
  Planning is a long-standing field within 
Artificial Intelligence which seeks to mimic the 
act of human planning. According to Russell and 
Norvig, classical planning is the task of finding a 
sequence of actions to accomplish a goal in a 
discrete, deterministic, static, fully observable 
environment” (Russell and Norvig, pg. 657). A 
plan, produced by the output of a planning 
function, will calculate an optimal course of 
action that enables the computer agent to progress 
from an initial starting state to a predetermined 
goal state. A successful path planning algorithm 
will seek to minimize the number of actions or 
steps an agent must take in order to achieve the 
goal state.  
 
  The planning method offers a useful approach 
for situations in which the agent has a limited 
amount of data and must provide a solution to a 
complex but constant environment. Current 
advancements in planning algorithm applications 
aim to solve problems such as course trajectories 
of NASA’s Mars Rover, management of retail 
warehouse facilities, and public transportation 
route optimization. As a pivotal sector of 
Artificial Intelligence, Planning algorithms have 

enormous potential to enhance path problem 
solving across numerous applications and 
revolutionize the way in which humans determine 
the correct course of action when facing complex 
real-world scenarios. 
 

Problem Definition: Block World 
  The Block World problem is a famous Path 
Planning problem in Artificial Intelligence whose 
aim is to return the optimal actions an agent 
should take in order to rearrange a selection of 
block objects from an initial state to a final state. 
In the Block World, we assume that the agent has 
a limited capacity to handle one block at a time 
through actions pick up, put down, stack, unstack, 
and move. Since the agent is constrained by its 
ability to handle one block at a time, we desire to 
provide an agent with an optimal guide that 
minimizes the number of steps an agent must 
execute. 
 
  Our team considers a 2-dimensional 
environment composed of rectangular and 
triangular blocks arranged on a table. Given an 
input block configuration and an output block 
configuration, our algorithm must aim to 
minimize the number of steps the agent must take 
to rearrange the environment from an initial to a 
goal state. In our planning optimization problem, 
we are constrained by the requirement that 
rectangular blocks cannot be placed on triangular 
blocks, but triangular blocks can rest on 
rectangular blocks.  
 
  To construct this block environment planning 
algorithm, we must define a few pivotal functions. 
First, we create five action functions that perform 



 

 

the operations pick up, put down, stack, unstack 
and move. Second, we define a neighbors function 
to determine allowable block configuration 
neighbors, as well as create lists of potential block 
operations - or environment “states” - the agent 
can take for each action the agent can perform. 
Next, we create a heuristic to rank the list of 
neighbors in an order that aims to achieve the goal 
state in the shortest number of actions. Finally, we 
implement a Greedy Best First Search algorithm 
to perform the exploration through the list of 
possible paths. In the following sections, we 
define our fabrication of each of these functions, 
and discuss the results of the algorithm for 
different test scenarios. 
 

Neighbors Function 
  In the code we would need a neighbors 
function that would return every neighboring state 
from the current state. The possible moves would 
then get scored by the heuristic function based on 
how it compares to the goal state. 
  
  We have two main scenarios: If a block is in 
the air, and if it is not. If a block is in the air, the 
moves that will get put in the list of possible 
moves would be only putdown, stack, and move 
whereas if there are no blocks in the air, the 
possible moves would be pickup and unstack. In 
each case we must create a deep copy from the 
current state as we do not actually want to change 
the current state but a hypothetical state to pass 
through to the heuristic.  
 
  When a block is in the air, the putdown 
function only has the table to put the block down 
on so this would only return one neighboring state. 
However, for the stack function, we would need 
to first find all clear blocks then create 
hypothetical states for each possible combination 
of putting the block down onto another block. For 
this we utilize the intertools function which 
essentially performs a matrix multiplication on 
two lists to provide every combination between 
the elements. We find the product between the 
blocks in the air with every open block and then 

create a deep copy to put into our possible moves 
list. 
 
  When a block is not in the air, we have the 
option to pick up a block from the table or unstack 
a block from another block. Either way, we could 
traverse a list of blocks that are either on table and 
clear for pickup, and not on table and clear for 
unstack. Finally, we concatenate all the lists which 
contain the move set for the current state and 
return this to be used in a heuristic. 
 

Heuristic Approach 
  Our initial approach was to use the same 
heuristic we would use in a maze problem with an 
A-star algorithm. We would calculate the 
Manhattan distance from the goal state for every 
neighboring state and combine that with a path 
cost from the initial state to make up our heuristic. 
However, in the block world, calculating the 
direct Manhattan distance from the goal state 
would be difficult to do, as we would have to keep 
track of and score every state based on how many 
moves away that state would be from the goal 
state. Based on time complexity and optimization 
we concluded that this would not necessarily be 
the most effective heuristic.  
 
  The next approach we took in our heuristic 
was to make one that was appropriate to the 
context of the block world. We understood that 
within every state, what defines the relationships 
between the blocks would be the properties .on() 
and .clear(). Each block had this property and in 
order to get our initial state to the goal state these 
properties would have to match that of the goal 
state. Therefore, in our heuristic, we decided to 
give each block a score based on if they match the. 
on() and .clear() of the goal state. The total score 
of each state became the sum of the scores of all 
the blocks in that state. We would be able to 
calculate a score for every state based on its 
relationship with the goal state. 
 
  This heuristic approach was useful in a way 
that we could use this as an application towards a 
stop condition of the planning. By scoring every 



 

 

state, we would know if the state has reached the 
goal state by comparing the scores of the two 
states. The goal state would have a full score of 
2*# of blocks and the current state would have a 
score based on its relationship with the goal state 
blocks’. on() and .clear() condition. 
 

Greedy Best First Search 
The Greedy Best First Search algorithm ex-

plores an environment by visiting the nodes that 
are closest to the goal. Each node is evaluated by 
a heuristic function and given a numerical value. 
When evaluating multiple nodes, the Greedy al-
gorithm will always choose the node closest to 
the goal state, making the algorithm ‘greedy.’  

 

  Greedy Best First Search is effective when 
evaluating the block's world.  Given the initial 
state, Greedy Best First Search evaluates all the 
possible neighboring “nodes” or in the case of 
the block's world, states. The Greedy algorithm 
uses a heuristic to assign a score to each of these 
states, and then stores the state along with the 
score into a priority queue. Using a priority 
queue, the state closest to the goal is stored in the 
front of the queue. The state in the front of the 
queue is then popped from the queue and is 
checked to see if it is the goal state. If it is the 
goal state, we return that state from the Greedy 
Best First Search algorithm. If it is not the goal 
state, we add that state to a list of visited states. 
This process is then repeated until we find the 
goal state. 

Results and Conclusion 
  The block’s world problem was solved using 
the Greedy Best First Search algorithm along with 
the heuristic function, and neighbors function. 
The heuristic function is used to evaluate how 
close a current state is to a goal state based on our 
original algorithm. The neighbors function is used 
to evaluate all the possible moves based on a 
current state. The Greedy Best First Search 
algorithm was used to traverse through the block 
world states until we find the goal. The goal was 

found using the greedy approach; Therefore, we 
are able to confirm the usage and efficiency of the 
Greedy Best First Search algorithm in the blocks 
world problem. Below is a visual of an example 
initial state and goal state representation of the 
block space, along with the necessary ordered 
moves to achieve this goal state: 
 

 

 



 

 

  A potential drawback of using GBFS would 
be the randomness associated with choosing the 
highest score. In many cases, our states have the 
same score as other states in the frontier. In this 
case there is a chance that the frontier will choose 
a state that will not lead to the goal state. This 
could result in not finding the optimal path but 
taking a longer path to get to the desired goal state. 
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