

Artificial Intelligence: Planning with Block Arrangements
Lars Askegaard, Bennet Botz, Kaz Matsuo

Instructed by Professor Sravya Kondakunta, St. Olaf College

Abstract
 Path planning is a category of Artificial

Intelligence that strives to determine the optimal
path or method steps to progress from an initial
state to a final state. In this problem, we
consider a 2-dimensional environment of
rectangular and triangular blocks

Introduction: Path Planning
 Planning is a long-standing field within
Artificial Intelligence which seeks to mimic the
act of human planning. According to Russell and
Norvig, classical planning is the task of finding a
sequence of actions to accomplish a goal in a
discrete, deterministic, static, fully observable
environment” (Russell and Norvig, pg. 657). A
plan, produced by the output of a planning
function, will calculate an optimal course of
action that enables the computer agent to progress
from an initial starting state to a predetermined
goal state. A successful path planning algorithm
will seek to minimize the number of actions or
steps an agent must take in order to achieve the
goal state.

 The planning method offers a useful approach
for situations in which the agent has a limited
amount of data and must provide a solution to a
complex but constant environment. Current
advancements in planning algorithm applications
aim to solve problems such as course trajectories
of NASA’s Mars Rover, management of retail
warehouse facilities, and public transportation
route optimization. As a pivotal sector of
Artificial Intelligence, Planning algorithms have

enormous potential to enhance path problem
solving across numerous applications and
revolutionize the way in which humans determine
the correct course of action when facing complex
real-world scenarios.

Problem Definition: Block World
 The Block World problem is a famous Path
Planning problem in Artificial Intelligence whose
aim is to return the optimal actions an agent
should take in order to rearrange a selection of
block objects from an initial state to a final state.
In the Block World, we assume that the agent has
a limited capacity to handle one block at a time
through actions pick up, put down, stack, unstack,
and move. Since the agent is constrained by its
ability to handle one block at a time, we desire to
provide an agent with an optimal guide that
minimizes the number of steps an agent must
execute.

 Our team considers a 2-dimensional
environment composed of rectangular and
triangular blocks arranged on a table. Given an
input block configuration and an output block
configuration, our algorithm must aim to
minimize the number of steps the agent must take
to rearrange the environment from an initial to a
goal state. In our planning optimization problem,
we are constrained by the requirement that
rectangular blocks cannot be placed on triangular
blocks, but triangular blocks can rest on
rectangular blocks.

 To construct this block environment planning
algorithm, we must define a few pivotal functions.
First, we create five action functions that perform

the operations pick up, put down, stack, unstack
and move. Second, we define a neighbors function
to determine allowable block configuration
neighbors, as well as create lists of potential block
operations - or environment “states” - the agent
can take for each action the agent can perform.
Next, we create a heuristic to rank the list of
neighbors in an order that aims to achieve the goal
state in the shortest number of actions. Finally, we
implement a Greedy Best First Search algorithm
to perform the exploration through the list of
possible paths. In the following sections, we
define our fabrication of each of these functions,
and discuss the results of the algorithm for
different test scenarios.

Neighbors Function
 In the code we would need a neighbors
function that would return every neighboring state
from the current state. The possible moves would
then get scored by the heuristic function based on
how it compares to the goal state.

 We have two main scenarios: If a block is in
the air, and if it is not. If a block is in the air, the
moves that will get put in the list of possible
moves would be only putdown, stack, and move
whereas if there are no blocks in the air, the
possible moves would be pickup and unstack. In
each case we must create a deep copy from the
current state as we do not actually want to change
the current state but a hypothetical state to pass
through to the heuristic.

 When a block is in the air, the putdown
function only has the table to put the block down
on so this would only return one neighboring state.
However, for the stack function, we would need
to first find all clear blocks then create
hypothetical states for each possible combination
of putting the block down onto another block. For
this we utilize the intertools function which
essentially performs a matrix multiplication on
two lists to provide every combination between
the elements. We find the product between the
blocks in the air with every open block and then

create a deep copy to put into our possible moves
list.

 When a block is not in the air, we have the
option to pick up a block from the table or unstack
a block from another block. Either way, we could
traverse a list of blocks that are either on table and
clear for pickup, and not on table and clear for
unstack. Finally, we concatenate all the lists which
contain the move set for the current state and
return this to be used in a heuristic.

Heuristic Approach
 Our initial approach was to use the same
heuristic we would use in a maze problem with an
A-star algorithm. We would calculate the
Manhattan distance from the goal state for every
neighboring state and combine that with a path
cost from the initial state to make up our heuristic.
However, in the block world, calculating the
direct Manhattan distance from the goal state
would be difficult to do, as we would have to keep
track of and score every state based on how many
moves away that state would be from the goal
state. Based on time complexity and optimization
we concluded that this would not necessarily be
the most effective heuristic.

 The next approach we took in our heuristic
was to make one that was appropriate to the
context of the block world. We understood that
within every state, what defines the relationships
between the blocks would be the properties .on()
and .clear(). Each block had this property and in
order to get our initial state to the goal state these
properties would have to match that of the goal
state. Therefore, in our heuristic, we decided to
give each block a score based on if they match the.
on() and .clear() of the goal state. The total score
of each state became the sum of the scores of all
the blocks in that state. We would be able to
calculate a score for every state based on its
relationship with the goal state.

 This heuristic approach was useful in a way
that we could use this as an application towards a
stop condition of the planning. By scoring every

state, we would know if the state has reached the
goal state by comparing the scores of the two
states. The goal state would have a full score of
2*# of blocks and the current state would have a
score based on its relationship with the goal state
blocks’. on() and .clear() condition.

Greedy Best First Search
The Greedy Best First Search algorithm ex-

plores an environment by visiting the nodes that
are closest to the goal. Each node is evaluated by
a heuristic function and given a numerical value.
When evaluating multiple nodes, the Greedy al-
gorithm will always choose the node closest to
the goal state, making the algorithm ‘greedy.’

 Greedy Best First Search is effective when
evaluating the block's world. Given the initial
state, Greedy Best First Search evaluates all the
possible neighboring “nodes” or in the case of
the block's world, states. The Greedy algorithm
uses a heuristic to assign a score to each of these
states, and then stores the state along with the
score into a priority queue. Using a priority
queue, the state closest to the goal is stored in the
front of the queue. The state in the front of the
queue is then popped from the queue and is
checked to see if it is the goal state. If it is the
goal state, we return that state from the Greedy
Best First Search algorithm. If it is not the goal
state, we add that state to a list of visited states.
This process is then repeated until we find the
goal state.

Results and Conclusion
 The block’s world problem was solved using
the Greedy Best First Search algorithm along with
the heuristic function, and neighbors function.
The heuristic function is used to evaluate how
close a current state is to a goal state based on our
original algorithm. The neighbors function is used
to evaluate all the possible moves based on a
current state. The Greedy Best First Search
algorithm was used to traverse through the block
world states until we find the goal. The goal was

found using the greedy approach; Therefore, we
are able to confirm the usage and efficiency of the
Greedy Best First Search algorithm in the blocks
world problem. Below is a visual of an example
initial state and goal state representation of the
block space, along with the necessary ordered
moves to achieve this goal state:

 A potential drawback of using GBFS would
be the randomness associated with choosing the
highest score. In many cases, our states have the
same score as other states in the frontier. In this
case there is a chance that the frontier will choose
a state that will not lead to the goal state. This
could result in not finding the optimal path but
taking a longer path to get to the desired goal state.

References
Russel, Stuart. Peter, Norvig. 2021. Artificial
Intelligence A Modern Approach, Fourth Edition.
Pearson; 4th edition.

Acknowledgements

Thank you to professor Sravya Kondrakunta for
supplying us this version of the Block World
Problem, and for extending elements of
pseudocode to aid with the coding process.

